
A web service composition approach
based on QoS preferences (Short paper)

Raluca Iordache
University ”POLITEHNICA” of Bucharest, Romania

Email: riordache@outlook.com

Florica Moldoveanu
University ”POLITEHNICA” of Bucharest, Romania

Email: fm@cs.pub.ro

Abstract—One important step in dynamic web service com-
position is to bind concrete web services to the activities involved
in the composition. Ideally, the component services are assigned
such that the resulting composite web service meets the service
level agreements and offers the best trade-off between the various
QoS parameters. This implies the ability to express preferences
related to the trade-offs. In this paper, we propose a binding-
as-a-service (BaaS) approach based on a powerful, but at the
same time simple and intuitive notation for specifying user
preferences. The typical client of a BaaS provider is a module of a
service composition framework. The service request describes the
abstract composition model, the available component services and
the QoS constraints and preferences. A prototype implementation
of this binding-as-a-service approach validates our method.

Keywords—multidimensional QoS preferences, service binding,
service composition.

I. INTRODUCTION

Web service composition is a complex task, which involves
three challenging steps: (1) composite web service specifi-
cation, (2) selection of the component web services and (3)
execution of the composite web services [1]. In this paper, we
focus on the second step, whose goal is to bind concrete web
services to the activities involved in the composition, in order
to produce the most suitable composite service. Since service
binding is required by any service composition middleware, we
advocate the use of a binding-as-a-service (BaaS) approach for
implementing this operation.

For each task in the abstract composition model created
in step (1), there are usually several web services offering
the required functionality. However, they may differ in non-
functional properties such as reliability, cost, or response time.
Therefore, the quality of service (QoS) is the deciding factor
in choosing which concrete web service to bind to each task.
The preferred selection strategy is a global planning approach,
where QoS constraints and preferences are expressed with
respect to the composite service as a whole [2]. An issue
related to the global planning is the computation of the QoS
of a composite service based on the QoS of its component
services. Most solutions to this problem are limited to com-
position models that can be represented as well-structured
workflows. Our binding-as-a-service (BaaS) implementation
uses the aggregation method proposed by Yang et al. [3], which
overcomes this restriction.

The ability to express trade-offs between different QoS pa-
rameters is critical in order to provide a binding that produces
the most suitable composite service. Common approaches are

based on specifying priorities or associating weights to the
different QoS dimensions. The drawback of these methods
is that they cannot accurately capture users’ preferences. The
BaaS approach presented in this work uses the conditional lex-
icographic method of articulating non-functional preferences
introduced in one of our previous papers [4]. This method
offers great flexibility, while being easy to use and understand.
It uses an intuitive notation and leads to a simple algorithm for
selecting web services, which does not require sophisticated
multi-criteria decision techniques.

The rest of this paper is organized as follows: Section II in-
troduces an illustrative example highlighting some of the issues
related to the QoS-aware dynamic web service composition.
Section III discusses the problem of estimating the QoS of
a composite service and presents the aggregation technique
chosen in this work. Section IV describes our conditional
lexicographic approach for expressing QoS preferences. The
last section concludes the paper and outlines future work
directions.

II. ILLUSTRATIVE EXAMPLE

In this section, we give an illustrative example that will
be used throughout this paper in order to expose some of
the issues related to the QoS-aware dynamic web service
composition. We consider an online trading system offering
services for trading various financial instruments. One of these
services allows customers to buy both domestic and foreign
stocks. Its business process model is depicted in Fig. 1.

Some of the tasks in this model (such as those for order
registration) represent internal actions of the online trading
system. Other tasks (such as those for getting stock quotes)
require interaction with external systems. The online trading
system implements the stock buying service as a composite
web service. For the tasks involving interaction with external
systems, it is necessary to find providers offering the required
functionality as a web service. Usually, there are several
alternatives for each of these tasks. For example, there are
many web services that provide stock quotes. The online
trading system has to decide which of the possible service
components to bind to each task in its composition model.
This service binding is a dynamic process, because over time,
some component services may cease to exist and new ones
may become available.

In our example, we consider that only the following QoS
attributes are interesting for the online trading system: exe-
cution time, cost, and reliability. The QoS of the composite

Fig. 1. BPMN model of a process for buying stocks

stock buying service is determined by the QoS of its service
components, which are assumed to be known. However, it is
not clear how to estimate the QoS of the composite service.
While the aggregated cost can be easily computed by adding
the costs of all component services, there is no obvious method
for estimating execution time and reliability.

In order to be able to dynamically bind component ser-
vices to the tasks specified in the composition model of the
stock buying service, the online trading system must have
an automated method of comparing composite services based
on their QoS. We add a few more details about the online
trading system to illustrate why comparing composite services
characterized by multiple QoS attributes is not a trivial task.
The executives of this system try to maximize their profit,
therefore they see the cost as the most important QoS parame-
ter. However, they are willing to ignore small cost differences
(not exceeding 10 cents) if the composite service with a higher
cost has better values for reliability and execution time. For
the customers of this system, it is very important that trading
orders are executed as soon as possible. Therefore, the online
trading systems guarantees that the execution time of its stock
buying service does not exceed 30 seconds. For every violation
of this agreement, the owners of the online trading system
must pay a penalty proportional with the delay. This means
that, when comparing two composite services, the execution
time becomes the most important parameter if at least one of
the compared services has an execution time exceeding the
30 seconds limit. It is clear that traditional methods such as
weighted sum or parameter ranking are not appropriate for
this scenario. In the next sections we address the problems
highlighted by this example.

III. THE AGGREGATED QOS OF COMPOSITE SERVICES

Various solutions have been proposed for the problem of
estimating the aggregated QoS of a composite service, but
they differ in the restrictions they impose on the topology of
the composition. Most of them are limited to orchestration
models that can be represented as well-structured workflows.
Yang et al. [3] have introduced a method that overcomes these
restrictions. This method, which is used in our binding-as-a-
service (BaaS) implementation, is presented in the remaining

of this section.

The input of this method is an orchestration model to-
gether with a binding that maps tasks to component services.
An orchestration model is a directed graph with execution
probabilities attached to its edges. The orchestration models
are decomposed into orchestration components, which are
subgraphs with a single-entry and single-exit point. The QoS is
computed in a bottom-up manner for each orchestration com-
ponent. Well-structured orchestration models, that is, models
where each split gateway has a corresponding join gateway,
are straightforward to analyze. Different aggregation formulas
are provided depending on the type of the QoS attribute, which
can be classified into three categories: critical path, additive
and multiplicative.

A preliminary step of the QoS aggregation method is to
use the block-structuring technique introduced in [5] to trans-
form an unstructured orchestration model into a maximally-
structured orchestration model. The model in Fig. 2 is behav-
iorally equivalent with the one in Fig. 1, but the left side half
of the transformed model is now well-structured.

The components that are irreducible using this technique
are called rigid components and they are of two types:
irreducible Directed Acyclic Graphs (DAG) and irreducible
multiple-entry, multiple-exit (MEME) loops. The authors of [3]
provide an algorithm that transforms irreducible DAG com-
ponents in equivalent choice components. Irreducible MEME
loops can be transformed using the block-structuring technique
into equivalent rigid components where the concurrency is
fully encapsulated within child components. For these equiv-
alent components, the expected number of times that a node
in the MEME loop is visited can be calculated using standard
methods. This allows computing the QoS of the irreducible
component by applying the aggregation formulas characteristic
to each category of QoS parameters.

IV. QOS PREFERENCE SPECIFICATION

As mentioned before, the ability to capture and handle
trade-offs between QoS preferences plays a crucial role in
creating a high quality composite service. In this work, we
use a method of expressing non-functional preferences that we

Fig. 2. Maximally structured model of the process for buying stocks

have introduced in [4]. This method is based on the observation
that, when trying to find a set of rules allowing them to choose
between several alternatives, people start by ranking their
preferences, in accordance with their perceived importance.
This action is equivalent to imposing a lexicographic order
on the different criteria that have to be considered. In most
situations, using such a strict hierarchy is not sufficient to
capture people’s real preferences. In this case, people usually
introduce additional rules that change the criteria priorities
when some specific condition is met. Our method establishes a
total order on the set of alternatives, by attaching conditions to
lexicographic preferences and provides a preference specifica-
tion language that can be used for authoring QoS preferences.

For illustration purposes, we refer again to the online
trading system example introduced in Sect. II. We consider
that the executives of the online trading see the cost as the
most important QoS attribute, followed by reliability and then
by execution time. As mentioned before, the executives are
willing to ignore small cost differences (not exceeding 10
cents) if the composite service with a higher cost has better
values for reliability and execution time. Furthermore, there
are penalties to be paid if the execution time of the composite
service exceeds 30 seconds. Therefore, when comparing two
composite services, the execution time becomes the most
important parameter if at least one of the compared services
has an execution time exceeding the 30 seconds limit.

In order to be able to articulate preferences for scenarios
like the one above, our specification language provides four
unary preference operators, which are shown in Table I.

TABLE I. PREFERENCE OPERATORS

Preference operator Meaning

AT LEAST ONE(condition) condition(service1) OR condition(service2)
EXACTLY ONE(condition) condition(service1) XOR condition(service2)
ALL(condition) condition(service1) AND condition(service2)
DIFF(attribute) |service1.attribute− service2.attribute|

The first three operators take as argument a boolean for-
mula, which usually involves one or more QoS attributes. The
formula is evaluated twice, once for each of the web services
to be compared. The two resulting boolean values are passed

as arguments to the boolean operator (OR, XOR, or AND)
associated with the given preference operator, in order to obtain
the return value.

The preference operator DIFF takes as argument a QoS
attribute and returns the modulus of the difference of its
corresponding values from the two web services compared.

Our specification language uses a preferences block that
includes a comma separated list of entries, called preference
rules, listed in the order of their importance. A preference
rule has three components: an optional condition, an attribute
indicating the QoS dimension used in comparisons and a
direction flag stating which values should be considered better.

In our specification language, the preferences correspond-
ing to the above described scenario can be articulated as shown
in Fig. 3. (The preference rule indexes appearing at the left
side of the figure are only informative and are not part of the
preference specification.)

preferences {
1) [AT LEAST ONE(execTime > 30)] execTime : low,
2) [DIFF(cost) > 10] cost : low,
3) reliability : high,
4) execTime : low,
5) cost : low,
}

Fig. 3. A specification of preferences

The specification language can deal with situations where
people are not fully aware of their preferences. When users
notice that the current rules do not accurately capture their
preferences, they can simply add a new conditional rule, thus
incrementally improving the preference specification.

In what follows, we use the notation s1 � s2 to indicate
that the web service s1 is preferred to the web service s2, and
the notation s1 ∼ s2 to indicate that the service s1 is indifferent
to the web service s2 (i.e., s1 and s2 are equally preferred).
Additionally, we introduce the notation s1 � s2

k
to indicate that

the web service s1 is preferred to the web service s2 and
that the preference rule k has been decisive in establishing

this relationship. The complementary operators ≺ and ≺
k

are
defined in a similar manner.

An algorithm for comparing two web services based on
the preferences expressed using our conditional lexicographic
approach is shown in Fig. 4.

1) function compareServices(service1, service2, preferences)
2) for i ← 1 .. length(preferences) do
3) cond ← preferences[i].condition
4) attr ← preferences[i].attribute
5) dir ← preferences[i].direction
6) if cond = null OR cond(service1, service2) = true then
7) result ← compare(service1.attr, service2.attr, dir)
8) if result 6= 0 then
9) return {result, i}

10) end if
11) end if
12) end for
13) return null
14) end function

Fig. 4. Pairwise comparison of two web services

The algorithm examines all entries in the preferences block
in the order in which they appear (line 2). If the current
preference rule has no attached condition or the attached
condition evaluates to true (line 6), the values corresponding to
the attribute specified by this entry are compared (line 7). The
compare function returns a numerical value that is positive if
the first argument is better, negative if the second argument
is better and 0 if the arguments are equal. If the attribute
values are not equal (line 8), the algorithm returns a tuple
containing the result of the current comparison and the index
of the preference rule that has been decisive in establishing
the preference relationship (line 9). Otherwise, the algorithm
continues its execution with the next preference rule. A null
return value (line 13) indicates an indifference relation between
the two web services, while a not-null tuple identifies a relation
of type ≺

k
or �

k
between them.

In a series of experiments, Tversky [6] has shown that peo-
ple have sometimes intransitive preferences. Therefore, being
able to capture such preferences is an important feature of our
specification language. However, a consequence of allowing
intransitive preferences is that the pairwise comparison of all
web service alternatives is in general not sufficient to impose
a total order on these services. In order to illustrate this, we
consider a set of 5 composite web services (WS1 through
WS5) with the aggregated QoS values specified in Table II.

TABLE II. RELEVANT QOS ATTRIBUTE VALUES

WS1 WS2 WS3 WS4 WS5

execTime 27 24 31 28 26
cost 536 548 520 525 540
reliability 0.97 0.96 0.98 0.98 0.96

Using the preferences specified in Fig. 3, the relations
identified by the pairwise comparison of the 5 composite
services above are depicted in Table III, where header notations
use the format i / j to indicate that the corresponding
symbol in the line below represents the preference relation
between the web services WSi and WSj .

TABLE III. PAIRWISE COMPARISON OF THE 5 COMPOSITE WEB
SERVICES

1/2 1/3 1/4 1/5 2/3 2/4 2/5 3/4 3/5 4/5

�
2

�
1

≺
2

≺
3

�
1

≺
2

�
4

≺
1

≺
1

�
2

In the above table the following intransitive relationship
can be observed: WS1 �WS2 �WS5 and WS5 �WS1.

In order to obtain a total order on the set of web service
alternatives, we attach to each web service i a score vector of
integer values: Vi ∈ Nr+1, where r is the number of preference
rules. The algorithm used to compute the score vectors is
presented in Fig. 5, where n denotes the number of web service
alternatives.

procedure createScoreVectors()
for i ← 1 .. n do

for k ← 1 .. r do
V k
i ← no. of times WSi is preferred to another service

due to decisive rule k (i.e., due to a �
k

relation).
end for
V r+1
i ← no. of times WSi is indifferent to another service

end for
end procedure

Fig. 5. Procedure to create the score vectors

For the 5 web service alternatives considered in our exam-
ple, the corresponding score vectors computed with the above
algorithm are presented in Fig. 6.

Using the score vectors, we are able to provide an algorithm
for the ranking of web service alternatives. This algorithm is
based on the function compareScores, described in pseudocode
in Fig. 7. Again, r is used to denote the number of preference
rules. The function takes as arguments two score vectors and
returns a numerical value that is positive if the web service
corresponding to the first score vector is preferred, negative
if the web service corresponding to the second score vector
is preferred and 0 if the corresponding web services are
indifferent to each other.

For each of the two corresponding web services, the
function computes the number of times it has been preferred
to other web services (lines 2, 3). This computation does not
take into account the number of times a web service has been
found to be indifferent to another one (hence the sum is taken
up to the value r, not r + 1).

If the previously computed values count1 and count2 are
not equal (line 4), the web service with the higher value is
chosen as the better one (line 5).

Otherwise, the algorithm scans each position in the score
vectors (line 7) and if it finds different values, the web service

Fig. 6. Score vectors of the 5 web service alternatives

1) function compareScores(V1, V2)
2) count1 ←

∑r
i=1 V

i
1

3) count2 ←
∑r

i=1 V
i
2

4) if count1 6= count2 then
5) return count1 − count2
6) end if
7) for i ← 1 .. r + 1 do
8) if V i

1 6= V i
2 then

9) return V i
1 − V i

2

10) end if
11) end for
12) return 0
13) end function

Fig. 7. Function for score vector comparison

corresponding to the higher value is chosen as the better one
(lines 8-10). The scanning of the values in the vector scores
starts with the position corresponding to the first preference
rule, because this is considered the most important one, and
it ends with the position corresponding to the number of
indifference relations (i.e., r + 1), because this is considered
the least important one. If the score vectors are identical, the
function returns 0 (line 12).

In contrast with the function compareServices presented
in Fig. 4, the function compareScores induces a total order
on the set of web service alternatives, thus allowing us to
rank them accordingly. Using this algorithm, the 5 web service
alternatives considered in our example will be ranked in the
following order: (WS4, WS1, WS5, WS2, WS3), with WS4

being the best alternative.

V. THE BINDING-AS-A-SERVICE (BAAS)
IMPLEMENTATION

A large number of web service composition frameworks
have been developed, with different architectures and method-
ologies. Nonetheless, service binding is a task required by
all these frameworks. Therefore, it is useful to offer this
functionality as a service. The typical client of a binding-
as-a-service (BaaS) provider is a module of a web service
composition framework, which needs to find the best mapping
of concrete web services to the tasks of a composition model.

We provide a QoS-aware BaaS implementation based on
the QoS aggregation method of Yang et al. [3] and on our
preference handling approach detailed in the previous section.
The prototype implementation is written in Java and it is
available as open source at: http://baas.sourceforge.net/.

A web service request sent to our BaaS provider must
contain the following information: the orchestration model;
the list of QoS attributes; for each task in the orchestration
model, a list of concrete web services offering the required
functionality; the QoS constraints; the QoS preferences.

The orchestration model is represented as a workflow with
execution probabilities attached to its edges. If probabilities are
missing, our implementation will assign default probabilities.
Edges starting from an XOR gateway are assigned a probability
of 1/k, where k is the number of outgoing edges of the given
XOR gateway. All other edges are assigned a probability of 1.

The list of QoS attributes must contain information about
the aggregation category of each attribute. The list of concrete

web services offering the required functionality of a given task
must specify for each concrete web service its QoS values.
Not all web services have all QoS attributes of the composite
service. For example, a composite service that converts data
sets to graphic charts may have a QoS attribute indicating
the number of colors of the resulting image. The composite
service may have a component service that sorts the data set.
The number of colors is clearly not a QoS attribute of the
sorting service. In situations where a QoS attribute is missing
for a component service, our implementation provides default
values, in accordance with the aggregation category of the
missing QoS attribute.

Some of the tasks in an orchestration model may be internal
actions. For these tasks, the list of concrete web services
implementing their functionality is empty.

The QoS preferences are specified using the preference
notation introduced in the previous section. Our BaaS imple-
mentation uses a genetic algorithm in order to find the best
mapping of component services to tasks. This algorithm and
the exprimental results will be discussed in a subsequent paper.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed a dynamic web service
composition approach that can deal with complex QoS pref-
erences. We have focused on the problem of binding concrete
web services to the activities involved in the composition and
we have offered a prototype implementation in the form of a
binding-as-a-service (BaaS) provider.

In our work, we have combined two powerful technologies.
The first one is our method of dealing with QoS preferences,
which offers great flexibility in managing trade-offs, but is
at the same time very intuitive. The second one is the QoS
aggregation method of Yang et al. [3], which has the major
advantage of being able to deal with unstructured orchestration
models.

Our current efforts are directed toward devising an ontology
compatible with the QoS preference approach used in this
paper. This ontology should also be able to deal with the
aggregation categories of QoS attributes.

REFERENCES

[1] El Haddad, J., Manouvrier, M., Rukoz, M., TQoS: Transactional and
QoS-Aware Selection Algorithm for Automatic Web Service Composi-
tion, IEEE Trans. on Services Computing, 3, issue 1, pp. 73–85, 2010

[2] Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J.,
Chang, H., QoS-Aware Middleware for Web Services Composition,
IEEE Trans. on Software Engineering, 30, issue 5, pp. 311-327, 2004

[3] Yang, Y., Dumas, M., Garca-Bauelos, L., Polyvyanyy, A., Zhang, L,
Generalized aggregate Quality of Service computation for composite
services, Journal of Systems and Software, 85(8), pp. 18181830, 2012

[4] Iordache, R., Moldoveanu, F., A Conditional Lexicographic Approach
for the Elicitation of QoS Preferences, In: Meersman, R., Panetto, H.,
Dillon, T.S., Rinderle-Ma, S., Dadam, P., Zhou, X., P, S., Ferscha, A.,
Bergamaschi, S., Cruz, I.F. (eds.) OTM Conferences (1), LNCS, vol.
7565, pp. 182-193. Springer 2012

[5] Polyvyanyy, A., Garca-Bauelos, L., Dumas, M., Structuring Acyclic
Process Models, In: Proceedings of the International Conference on
Business Process Management, pp. 276–293,New York, NY, USA, 2010

[6] Tversky, A., Intransitivity of Preferences, Psychological Review, vol.76,
no.1, pp. 31–48, 1969.

